본문 바로가기

Mathematics/Measure Theory4

04. Measurable Functions Measurable Functions Lebesgue integral을 공부하기 전 마지막 준비입니다. Lebesgue integral은 다음과 같이 표기합니다. \[\int_X f \,d{\mu}\] 표기를 보면 크게 3가지 요소가 있음을 확인할 수 있습니다. 바로 집합 \(X\), measure \(\mu\), 그리고 함수 \(f\)입니다. 집합과 measure는 다루었으니 마지막으로 함수에 관한 이야기를 조금 하면 Lebesgue integral을 정의할 수 있습니다! 이제부터 다루는 measurable function 관련 내용은 일반적인 measurable space \((X, \mathscr{F})\)에서 논의합니다. 여기서 \(\mathscr{F}\)는 당연히 \(\sigma\)-algebr.. 2023. 2. 6.
03. Remarks, Measure Spaces Remarks on Construction of Measure Construction of measure 증명에서 추가로 참고할 내용입니다. 명제. \(A\)가 열린집합이면 \(A \in \mathfrak{M}(\mu)\) 이다. 또한 \(A^C \in \mathfrak{M}(\mu)\) 이므로, \(F\)가 닫힌집합이면 \(F \in \mathfrak{M}(\mu)\) 이다. 증명. 중심이 \(x\in \mathbb{R}^p\) 이고 반지름이 \(r\)인 열린 box를 \(I(x, r)\)이라 두자. \(I(x, r)\)은 명백히 \(\mathfrak{M}_F(\mu)\)의 원소이다. 이제 \[A = \bigcup_{\substack{x \in \mathbb{Q}^p, \; r \in \mathbb{Q.. 2023. 1. 24.
02. Construction of Measure Construction of Measure 이제 본격적으로 집합을 재보도록 하겠습니다. 우리가 잴 수 있는 집합들부터 시작합니다. \(\mathbb{R}^p\)에서 논의할 건데, 이제 여기서부터는 \(\mathbb{R}\)의 구간의 열림/닫힘을 모두 포괄하여 정의합니다. 즉, \(\mathbb{R}\)의 구간이라고 하면 \([a, b], (a, b), [a, b), (a, b]\) 네 가지 경우를 모두 포함합니다. 정의. (\(\mathbb{R}^p\)의 구간) \(a_i, b_i \in \mathbb{R}\), \(a_i \leq b_i\) 라 하자. \(I_i\)가 \(\mathbb{R}\)의 구간이라고 할 때, \(\mathbb{R}^p\)의 구간은 \[\prod_{i=1}^p I_i = I_1 \.. 2023. 1. 23.
01. Algebra of Sets Introduction 이 시리즈에서는 르벡 적분을 다룹니다. 르벡 적분 또한 함수의 그래프와 \(x\)축 사이의 ‘부호 있는 넓이’를 측정한다는 점에서 리만 적분과 유사합니다. 하지만 리만 적분에서는 \(x\)축을 잘게 잘라 넓이를 근사했기 때문에 적분 가능성이 함수의 연속성에 크게 의존하게 됩니다. 르벡 적분에서는 \(y\)축을 잘게 자름으로써 이러한 문제를 해결하고, 적분의 수렴정리와 같은 유용한 결과를 쉽게 얻을 수 있습니다. 참고사항 서울대학교 수리과학부 해석개론 및 연습 2 강의를 들으며 제가 정리한 강의 노트를 재구성했습니다. 강의 교재가 Principles of Mathematical Analysis (Walter Rudin)이기 때문에 이 책을 많이 참고하였습니다. 수학 용어 특성상 번역.. 2023. 1. 11.